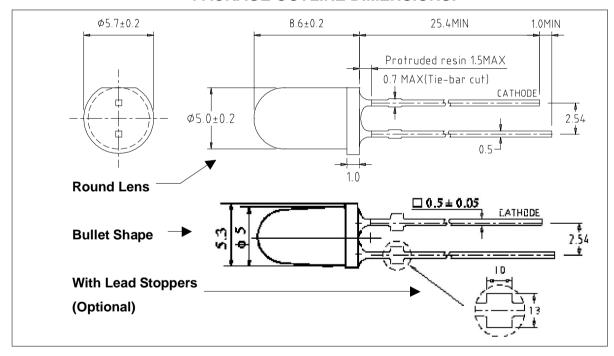


T-1 ¾ (5mm) Through-Hole Package


BL-LBUW5 series

FEATURES	APPLICATIONS
 Extremely uniform white LED. Super luminosity white LED (GaN die). Narrow and wide viewing angles. Water clear package or diffused. T-1¾ (5mm) all resin mold. Class 1 ESD rating 	 Flash Lights. Traffic signals. Desk Lamps. Lanterns. Garden Lights. Backlighting. Solar Lighting.

VIEWING ANGLE OPTIONS:

Product Code	Viewing Angle (2θ½) (Degrees)
BL-LBUW5B20C	20°±3°
BL-LBUW5N40C	40°±3°
BL-LBUW5N60M	60°±5°

PACKAGE OUTLINE DIMENSIONS:

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25 (0.01") mm unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

T-1 ¾ (5mm) Through-Hole Package

BL-LBUW5 series

ABSOLUTE MAXIMUN RATING (at $T_A = 25^{\circ}C$)

Parameter	Symbol	Value	Unit
Continuous Forward Current	I _F	30 *	mA
Peak Forward Current (1/16 Duty Cycle, 0.1msec Pulse width)	I _{Fp}	150	mA
Power Dissipation	P_d	120	mW
Forward Voltage	V_{f}	3.6	V
Derating Factor	D_F	0.4	mA/°C
Reverse Voltage	V_{R}	5.0	V
Operating Temperature	T_{opr}	-25 to +85	°C
Storage Temperature	T_{stg}	-35 to +100	°C
Lead Soldering Temperature (1.6mm (0.063") from body)	260°C for 5 seconds		

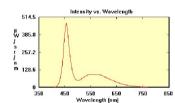
^{*} If LEDs will be continuously ON (24/7), it is highly recommended to drive them at 20 mA or below to reduce lumen/brightness decay rate.

LUMINOUS INTENSITY (at 20 mA DC / $T_A = 25^{\circ}C$)

			Lu	umino	ous Intensity	/ (mc	d)		
Product Code		Rank R			Rank S			Rank	Т
	Min.	Тур.	Max/	/Min	Тур.	Max	/Min	Тур.	Max.
BL-LBUW5B20C	7500	9200	115	00	12500	165	500	18000	22500
BL-LBUW5N40C	1500	1800	210	00	2600	30	00	3600	4300
BL-LBUW5N60M	1500	1800	206	60	2200	26	00	2900	3200

Note: Typical forward voltage (V_F) at forward current (I_F) 20 mA is 3.2 ± 0.1 V

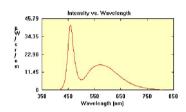
T-1 ¾ (5mm) Through-Hole Package


COLOR RANK LIMITS (at 20 mA DC / $T_A = 25$ °C)

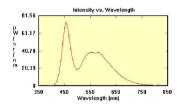
BIN	Color Rendering Index	Approximate Color Temperature (K)
Α	50 - 65	9,500 -15,000
В	70 - 90	5,500 - 9,500
С	75 - 95	4,500 - 5,500
D	70 - 85	2,800 - 3,200

COLOR RANKS CIE CHROMATICITY COORDINATES

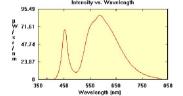
A-Rank (Approximate Color Temperature: 9,500-15,000K)


	Rank A					
X	0.280	0.264	0.283	0.296		
Υ	0.248	0.267	0.305	0.276		

B-Rank (Approximate Color Temperature: 5,500-9,500K)


	Rank B1				
X	0.287	0.283	0.330	0.330	
Υ	0.295	0.305	0.360	0.339	

	Rank B2				
X	0.296	0.287	0.330	0.330	
Υ	0.276	0.295	0.339	0.318	

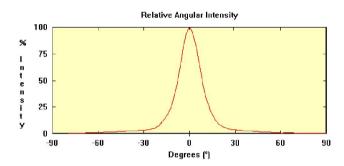

C-Rank (Approximate Color Temperature: 4,500-5,500K)

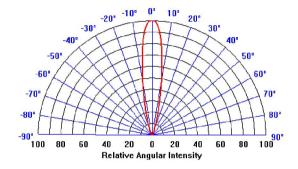
	Rank C				
Х	0.330	0.330	0.361	0.356	
Υ	0.318	0.360	0.385	0.351	

D-Rank (Approximate Color Temperature: 2,800-3,200K)

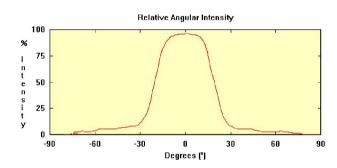
	Rank D				
Χ	0.440	0.440	0.500	0.500	
Υ	0.400	0.500	0.500	0.400	

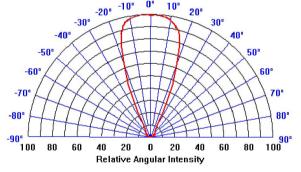
Note: Rank D yields an 8% to 12% reduction in photometric intensity (mcd)

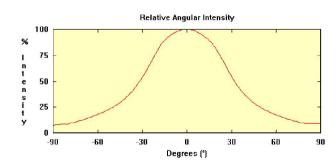

T-1 ¾ (5mm) Through-Hole Package

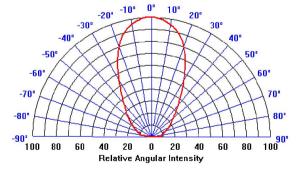


BL-LBUW5 series

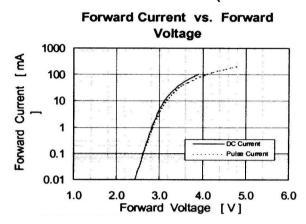

BEAM RADIATION PATTERNS


5B20C Series




5N40C Series

5N60M Series


T-1 ¾ (5mm) Through-Hole Package

TYPICAL ELECTRICAL CHARACTERISTICS CURVES

(at 20 mA DC / $T_A = 25^{\circ}C$)

Luminous Intensity vs. Forward Current

4

Selative Framinons Intensity vs. Forward Current

4

5

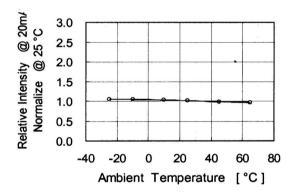
5

5

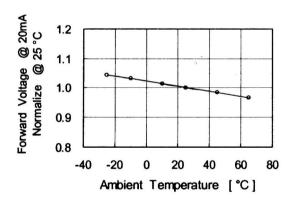
6

7

1


10

100

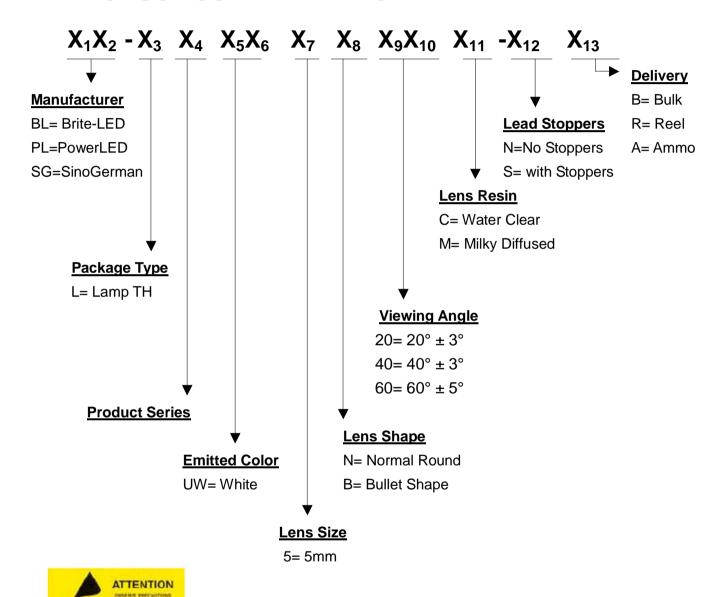

1000

Forward Current [mA]

Relative Intensity vs. Temperature

Forward Voltage vs. Temperature

GENERAL NOTES:


- Luminous Intensity (Iv) is measured with a light sensor and filter combination (goniospectroradiometer) and is the Luminous Flux per unit solid angle (steradian) emitted by the LED lamp in the direction of the mechanical axis of the lamp and then weighed by the eye response curve (1931 CIE 2° Observer Chromaticity Diagram).
- 2. Luminous Intensity measurement uncertainty is +/- 15% due to test procedures and equipment variations.
- 3. θ1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity. Tolerance +/- 3°.
- 4. The Chromaticity Coordinates (x,y), are derived from the 1931 CIE 2° Observer Chromaticity Diagram.
- 5. Chromaticity Coordinate measurement uncertainty is +/- 0.05 due to variations.
- 6. Color Temperature derived from black body curve on 1964 u-v CIE chromaticity diagram.
- Caution for ESD: Static Electricity and surges can damage the LED. It is recommended using a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.
- 8. Do not apply excess mechanical stress to the leads, especially when heated or while soldering.

T-1 ¾ (5mm) Through-Hole Package

BL-LBUW5 series

PRODUCT CODE BREAKDOWN

<u>WARNING</u>: White LEDs are made using a blue (GaN) die. GaN die is highly susceptible to Electro Static Discharge (ESD) damage, therefore proper storage, handling and manufacturing procedures need to be followed at all times. ESD damage can vary in its degree; from very subtle to catastrophic, and invariably will affect the LED's performance and life.